

 Navigation

 	
 index

 	
 next |

 	CRUD View

Contents

	Introduction
	When to use CRUD View

	Status

	Installation
	Requirements

	Getting the Code

	Loading the plugin

	Configuring the AppController

	Using It In Your Controllers

	View the Results

	Basic Usage
	Implementing an Index List
	Providing Associations to be Displayed

	Specifying the Fields to be Displayed

	Linking to Actions

	Implementing an Add Action

	Implementing an Edit Action

	Specifying the Fields to be Displayed

	Limiting the Associations Information
	Pre-Selecting Association Options

	Disabling the Extra Submit Buttons

	Implementing a View Action
	Specifying the Fields to be Displayed

	Providing Associations to be Displayed

	Going Forward

 Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD View

Introduction

CRUD View is an Admin Generator for CakePHP built on top of the CRUD plugin. It
is flexible enough that it can be used only for certain parts of your
applications and aims to be flexible enough so it requires little configuration.

The core philosophy behind CRUD and CRUD view is that you only need to deal with
aspects of your applications. This means that you should be able to listen for
events in order to modify how it looks and how it behaves.

Another goal of CRUD View is that its parts should be replaceable where
possible, but it should offer a sane, ready-to-use Admin interface by default
only by providing the database it needs to work with.

When to use CRUD View

	When you need to implement an Admin interface that is generated from the
Backend. If you want to create your interface using only javascript, please
only use the CRUD plugin as it will help you creating the required API.

	When you want to take care about the rules of your data processing and not too
much how the interface is going to look like.

	If you prefer tweaking, overriding and configuring instead of doing
everything from scratch.

Status

This plugin is still in early development status, things may change suddenly,
but it can be used in real projects already.

 Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD View

Installation

Installing CRUD view requires only a few steps

Requirements

	CakePHP 3.x

Getting the Code

The recommended installation method for this plugin is by using composer.

In your aplication forlder execute:

composer require friendsofcake/crud-view

It is highly recommended that you install the Search plugin as well:

composer require friendsofcake/search

Loading the plugin

Execute the following lines from your application folder:

bin/cake plugin load Crud
bin/cake plugin load CrudView
bin/cake plugin load BootstrapUI
bin/cake plugin load Search

Configuring the AppController

I you haven’t configured the CRUD plugin already add the following line to your
src/Controller/AppController.php file

<?php
namespace App\Controller;

class AppController extends \Cake\Controller\Controller {

 use \Crud\Controller\ControllerTrait;

 public function initialize()
 {
 $this->viewClass = 'CrudView\View\CrudView';
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Index',
 'Crud.View',
 'Crud.Add',
 'Crud.Edit',
 'Crud.Delete',
 'Crud.Lookup',
],
 'listeners' => [
 'CrudView.View',
 'Crud.Redirect',
 'Crud.RelatedModels',
 'CrudView.Search'
]
]);
 }
}

If you are familair with the CRUD plugin already, you will immediately understand
that Crud view is simply a listener for the events generated by the plugin. If
this is new to you, don’t worry, it will be explained in the following sections.

Using It In Your Controllers

Any controller inheriting from AppController will automatically implement
the specified actions loaded int the CRUD component configuration.
Therefore, you can just leave your controller code empty!

<?php
namespace App\Controller;

class CategoriesController extends AppController {
 // No code here, but we have all actions available to use!
}

View the Results

You can now access your categories list by pointing your browser to
http://example.com/categories. Browse around your new Admin interface for
each of the controllers you have in your application.

 Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	CRUD View

Basic Usage

Getting comfortable with CRUD View usually depends on getting grips of the CRUD
plugin first. Since much of the features this plugin provides are implemented on
top of the features exposed by the CRUD plugin, much of the documentation will
just repeat what it is possible in it.

Implementing an Index List

Rendering a list of the rows in a table is a matter of just adding the Crud.Index
action to the Crud component and the CrudView.View as a listener.

<?php
public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Index',
 ...
],
 'listeners' => [
 'CrudView.View',
 ...
]
]);
 }

There is no need to have an `index() function in your controller. But you
can implement it to customize both the behavior and looks of the index listing
page.

<?php
...
class ArticlesController extends AppController
{
 public function index()
 {
 // Your customization and configuration changes here
 ...
 return $this->Crud->execute();
 }
}

Most configuration changes need to be done by using the config() function in
the action object. The config() method can be used for both reading and
writing.

<?php
...
public function index()
{
 $action = $this->Crud->action(); // Gets the IndexAction object
 debug($action->config()); // Show all configuration related to this action
 return $this->Crud->execute();
}

Below is a list of the configuration values that can be used and how they affect
the rendering of your view:

Providing Associations to be Displayed

By default all belongsTo and hasOne associations are fetched in the
pagination query for the index view. If you wanted to blacklist one of those
associations.

Fore example you may want to not fetch the Authors association of the
Articles as you don’t plan to show it in the index table:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.relations_blacklist', ['Authors', ...]);
 return $this->Crud->execute();
}

If you want to be specific about which association need to be fetched, just use
the scaffold.relations configuration key:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.relations', ['Categories', 'Tags']);
 return $this->Crud->execute();
}

Alternatively, you can use the Crud plugin’s beforePaginate method to
alter the contain() list for the pagination query:

<?php
...
public function index()
{
 $this->Crud->on('beforePaginate', function ($event) {
 $paginationQuery = $event->subject()->query;
 $paginationQuery->contain([
 'Categories',
 'Authors' => ['fields' => ['id', 'name']]
]);
 });
 return $this->Crud->execute();
}

Specifying the Fields to be Displayed

If you wish to control which fields should be displayed in the index table, use
the scaffold.fields and scaffold.fields_blacklist configuration keys. By
default, all fields from the table will be displayed

For example, let’s avoid the created and modified fields from being
displayed in the index table:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields_blacklist', ['created', 'modified']);
 return $this->Crud->execute();
}

You can also be specific about the fields, and the order, in which they should
appear in the index table:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields', ['title', 'body', 'category', 'published_time']);
 return $this->Crud->execute();
}

Linking to Actions

At the end of each row in the index table, there will be a list of actions
links, such as View, Edit and Delete. If you wish to control which
actions should be displayed or not, use the scaffold.actions and
scaffold.actions_blacklist configurations keys.

For example, imagine we wanted to remove the Delete link from the index
table:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.actions_blacklist', ['delete']);
 return $this->Crud->execute();
}

Likewise, you can instruct the CrudView plugin on which actions should be
specifically displayed in the index view:

<?php
...
public function index()
{
 $action = $this->Crud->action();
 $action->config('scaffold.actions', ['view', 'add', 'edit']);
 return $this->Crud->execute();
}

Implementing an Add Action

If you have read this far, you know almost everything there is to know about
configuring any type of action using CrudView, but being explicit about what
is available in all of them will not hurt.

Implementing the Add action is done by adding the Crud.View action to
the Crud component configuration:

<?php
public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Add',
 ...
],
 'listeners' => [
 'CrudView.View',
 'Crud.Redirect'
 'Crud.RelatedModels'
 ...
]
]);
 }

For the Add action it is recommended that you add the Crud.Redirect and
Crud.RelatedModels listeners. The former will help adding more redirection
options after saving the record and the latter will send the required
information to the view so that the select widgets for associations get the
correct options.

Implementing an Edit Action

Likewise, edit actions can be implemented by adding the right configuration to
the Crud component. This is the recommended configuration:

<?php
public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Edit',
 ...
],
 'listeners' => [
 'CrudView.View',
 'Crud.Redirect'
 'Crud.RelatedModels'
 ...
]
]);
 }

As with the Add action, the Crud.Redirect and
Crud.RelatedModels listeners will help handling redirection after save and
help populate the select widgets for associations.

Specifying the Fields to be Displayed

When adding or editing a record, you probably want to avoid some of the fields from
being displayed as an input in the form. Use the scaffold.fields and
scaffold.fields_blacklist.

For example, let’s avoid having inputs for the created and modified
fields in the form:

<?php
...
public function add()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields_blacklist', ['created', 'modified']);
 return $this->Crud->execute();
}

It is also possible to directly specify which fields should have an input in the
form by using the scaffold.fields configuration key:

<?php
...
public function edit()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields', ['title', 'body', 'category_id']);
 return $this->Crud->execute();
}

You can pass attributes or change the form input type to specific fields when
using the scaffold.fields configuration key. For example, you may want to
add the placeholder property to the title input:

<?php
...
public function add()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields', [
 'title' => ['placeholder' => 'Insert a title here'],
 'body',
 'category_id'
]);
 return $this->Crud->execute();
}

The configuration can be used in both add and edit actions.

Limiting the Associations Information

By default the RelatedModels listener will populate the select boxes in the
form by looking up all the records from the associated tables. For example, when
creating an Article, if you have a Categories association it will populate
the select box for the category_id field.

For a full explanation on RelatedModels please visit the CRUD Documentation
for the RelatedModelsListener [http://crud.readthedocs.org/en/latest/listeners/related-models.html].

If you want to alter the query that is used for an association in particular,
you can use the relatedModels event:

<?php
...
public function add()
{
 $this->Crud->on('relatedModel', function(\Cake\Event\Event $event) {
 if ($event->subject->association->name() === 'Categories') {
 $event->subject->query->limit(3);
 $event->subject->query->where(['is_active' => true]);
 }
 });
 return $this->Crud->execute();
}

The callback can be used in both add and edit actions.

Pre-Selecting Association Options

In order to pre-select the right association options in an edit action, for
example pre-selecting the category_id in the categories select box,
CrudView will automatically fetch all associations for the entity to be
modified.

This can be wasteful at times, especially if you only allow a few associations
to be saved. For this case, you may use the scaffold.relations and
scaffold.relations_blacklist to control what associations are added to
contain():

<?php
...
public function edit()
{
 $action $this->Crud->action();
 // Only fetch association info for Categories and Tags
 $action->config('scaffold.relations', ['Categories', 'Tags']);
 return $this->Crud->execute();
}

If you choose to use scaffold.relations_blacklist, then you need only
specify those association that should not be added to contain():

<?php
...
public function edit()
{
 $action $this->Crud->action();
 // Only fetch association info for Categories and Tags
 $action->config('scaffold.relations_blacklist', ['Authors']);
 return $this->Crud->execute();
}

Disabling the Extra Submit Buttons

You may have noticed already that in the add form there are multiple submit
buttons. If you wish to only keep the “Save” button, you set the scaffold.disable_extra_buttons
configuration key to true:

<?php
...
public function add()
{
 $action = $this->Crud->action();
 $action->config('scaffold.disable_extra_buttons', true);
 return $this->Crud->execute();
}

It is also possible to only disable a few of the extra submit buttons by using
the scaffold.extra_buttons_blacklist configuration key:

<?php
...
public function add()
{
 $action = $this->Crud->action();
 $action->config('scaffold.extra_buttons_blacklist', [
 'save_and_continue', // Hide the Save and Continue button
 'save_and_create', // Hide the Save and create new button
 'back', // Hide the back button
]);
 return $this->Crud->execute();
}

Both settings can be used in add and edit actions.

Implementing a View Action

Implementing a View action, for displaying the full information for
a record, including its associations is also achieved via configuring the
Crud component:

<?php
public function initialize()
{
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.View',
 ...
],
 'listeners' => [
 'CrudView.View',
 ...
]
]);
 }

For this type of action there are no extra recommended listeners that you can
apply, but there are some configuration options you can use to customize the
information that is displayed.

Specifying the Fields to be Displayed

If you wish to control which fields should be displayed in the view table, use
the scaffold.fields and scaffold.fields_blacklist configuration keys. By
default, all fields from the table will be displayed

For example, let’s avoid the created and modified fields from being
displayed in the view table:

<?php
...
public function view()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields_blacklist', ['created', 'modified']);
 return $this->Crud->execute();
}

You can also be specific about the fields, and the order, in which they should
appear in the index table:

<?php
...
public function view()
{
 $action = $this->Crud->action();
 $action->config('scaffold.fields', ['title', 'body', 'category', 'published_time']);
 return $this->Crud->execute();
}

Providing Associations to be Displayed

By default all associations are fetched so they can be displayed in the view action.
Similarly to the Index action, you can use the scaffold.relations and
the scaffold.relations_blacklist

Fore example you may want to not fetch the Authors association of the
Articles as it may be implicit by the currently logged-in user:

<?php
...
public function view()
{
 $action = $this->Crud->action();
 $action->config('scaffold.relations_blacklist', ['Authors', ...]);
 return $this->Crud->execute();
}

If you want to be specific about which association need to be fetched, just use
the scaffold.relations configuration key:

<?php
...
public function view()
{
 $action = $this->Crud->action();
 $action->config('scaffold.relations', ['Categories', 'Tags']);
 return $this->Crud->execute();
}

Alternatively, you can use the Crud plugin’s beforePaginate method to
alter the contain() list for the pagination query:

<?php
...
public function view()
{
 $this->Crud->on('beforeFind', function ($event) {
 $event->subject()->query->contain([
 'Categories',
 'Authors' => ['fields' => ['id', 'name']]
]);
 });
 return $this->Crud->execute();
}

Going Forward

The following chapters will show you how to customize the output of each field,
how to override parts of the templates and implementing search auto-completion.

 Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	CRUD View

Index

 Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		CRUD View »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

customizing-templats.html

 Navigation

 		
 index

 		CRUD View »

Customizing Templates

Despite CrudView being quite smart at guessing how to display your data and
having great defaults, it is very often that you need to customize the look and
feel of your Admin application.

Formatting fields

The most immediate changes you can do in the way data is displayed is by
applying formatters to any of your fields. Whenever you use the
scaffold.fields configuration key, you can specify a formatter to be used.

<?php
...
class ArticlesController extends AppController
{
 public function index()
 {
 $action = $this->Crud->action();
 $action->confg('scaffold.fields', [
 'title',
 'published_time' => [
 'formatter' => function ($name, Time $value) {
 return $value->nice();
 }
],
]);
 return $this->Crud->execute();
 }
}

Formatting with a Callable

The most immediate way of formatting a field is by passing a callable function
or object. Callable functions or objects will receive 3 arguments:

		$name The name of the field to be displayed

		$value The value of the field that should be outputted

		$entity The entity object from which the field was extracted

For example, imagine that when displaying the published_time property, we
wanted to also display who approved the article:

<?php
...
$action->config('scaffold.fields', [
 ...
 'published_time' => [
 'formatter' => function ($name, $value, $entity) {
 return $value->nice() . sprintf(' (Approved by %s)', $entity->approver->name);
 }
]
]);

Formatting with an Element

Sometimes you want to execute more complex formatting logic, that may involve
the use of view helpers or outputting HTML. Since building HTML outside of the
view layer is not ideal, you can use the element formatter for any of your
fields.

For example, consider this example where we want to link the published_time
to the same index action by passing some search arguments:

<?php
...
$action->config('scaffold.fields', [
 ...
 'published_time' => [
 'formatter' => 'element',
 'element' => 'search/published_time',
 'action' => 'index'
]
]);

We have instructed the formatter to use search/published_time element. Then,
it is just a matter of creating the element file with the right content:

<?php
// src/Template/Element/search/published_time.ctp

echo $this->Html->link($value->timeAgoInWords(), [
 'action' => $options['action'],
 'published_time' => $value->format('Y-m-d')
]);

After this, when displaying the published_time field, there will the will be
a link similar to this one:

4 days ago

Element files will have available at least the following variables:

		$value: The value of the field

		$field: The name of the field it is intended to be rendered

		$context: The entity from which the value came from

		$options: The array of options associated to the field as passed in scaffold.fields

Changing Field Header or Label Names

CrudView infers the name of the field by splitting the field so that it can
be read by a human. Sometimes this is just not enough, or you may wish to show
an entirely different header in a table or label in a form.

Changing Pagination Table Headers

In your index() action use the scaffold.fields configuration to set the
title option to any field you want their table header changed:

<?php
...
class ArticlesController extends AppController
{
 public function index()
 {
 $action = $this->Crud->action();
 $action->confg('scaffold.fields', [
 'author_id' => ['title' => 'Author Name'],
 ... // The rest of the fields to display here
]);
 return $this->Crud->execute();
 }
}

Changing Form Input Labels

In our add() and edit() actions, you can specify the input label for
title for any of the fields by using the scaffold.fields configuration

<?php
...
class ArticlesController extends AppController
{
 public function add()
 {
 $action = $this->Crud->action();
 $action->confg('scaffold.fields', [
 'author_id' => ['label' => 'Author Name'],
 ... // The rest of the fields to display here
]);
 return $this->Crud->execute();
 }
}

Overriding Template Parts

All the CrudView templates are built from several elements that can be
overridden by creating them in your own src/Template/Element folder. The
following sections will list all the elements that can be overridden for each
type of action.

In general, if you want to override a template, it is a good idea to copy the
original implementation from
vendor/friendsofcake/crud-view/src/Template/Element

Index Action Elements

		search

		Create src/Template/Element/search.ctp for having full control over how
the search filters are displayed in your pagination table. You can expect the
$searchInputs and $searchOptions variables to be available

		index/pagination

		Create src/Template/Element/index/pagination.ctp To implement your own
pagination links and counter.

		index/bulk_actions/table

		Create src/Template/Element/index/bulk_actions/table.ctp for changing how
the bulk action inputs for the whole table. You can expect the
$bulkActions, $primaryKey and $singularVar variables to be
available.

		index/bulk_actions/record

		Create src/Template/Element/index/bulk_actions/record.ctp for changing how
the bulk action inputs for each row are displayed. You can expect the
$bulkActions, $primaryKey and $singularVar variables to be
available.

		index/bulk_actions/form_start

		Create src/Template/Element/index/bulk_actions/form_start.ctp To customize
the Form create call for bulk actions

		index/bulk_actions/form_end

		Create src/Template/Element/index/bulk_actions/form_end.ctp To customize
the Form end call for bulk actions

 © Copyright 2015, Fiends of Cake.
 Created using Sphinx 1.3.1.

